Question			Marking details	Marks Available
1.	(a)		Flow of charge [acceptcharge/ions] or $\frac{[\Delta]Q}{[\Delta]t}$, if the symbols defined	1
	<i>(b)</i>	(i)	Sum of areas of triangle and rectangle areas attempted [or reasonab attempt at area of trapezium] (1) Q = 3.0 C ((unit))(1)	le 2
		(ii)	No. of electrons = $\frac{3.0(\text{e.c.f.})}{1.6 \times 10^{-19} (1)} = 1.9 \times 10^{-19} (1) [1^{\text{st}} \text{ mark div by } e^{-19} (1)]$] 2
		(iii)	I = 1.2(0) A (from graph) (1);	
			$v = \frac{I}{nAe}$ [manipulation shown – could be in following substitution -	_
			or by impl.](e.c.f. on I](1) = $3.75 \times 10^{-5} \text{ m s}^{-1}$ [accept $3.8 \times 10^{-5} \text{ m s}^{-1}$] (e.c.f. on I) (1)	3
				[8]
2.	(a)		<u>Free</u> [or equiv, e.g. conducting / moving / delocalised] electrons (1) collide / interact / hindered [by] (1) with atoms / ions of metal conductor / lattice ["particles" b.o.d.](1)	3
	<i>(b)</i>	(i)	I. $[0-2 V]$: Resistance constant / changes by v. small amount II. $[2-8 V]$: Resistance increases	1 1
		(ii) (iii)	Either $R_{bulb} = \frac{6.0}{0.8(1)} = 7.5 \Omega (1)$ Total resistance = 5 $\Omega (1)$ [ecf] $\begin{bmatrix} Correct use of \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \end{bmatrix}$ I = 1.2 A (1) [ecf on R] Subst in $P = I^2R$ [ecf on R and I] or in $P = \frac{V^2}{R}$ [ecf on R only] or P = IV [ecf on I only] (1) P = 7.2 W (1)) 4
				[11]

PH1 Mark Scheme – January 2010

Question			Marking details	
3.	(a)		The electrical (potential) <u>energy transferred [or work done]</u> <i>per</i> <i>coulomb / unit charge</i> <u>passing through the cell [Underlined</u> (1); <i>italic</i> (1)]	2
	<i>(b)</i>		Voltmeter shown in parallel with cell [outside the dotted line – accept inside the line if outside the cell/i.r combination] [Accept equivalent, e.g. connected in parallel with resistor]	1
	(c)		All points correctly plotted (2) [-1 per mistake, min 0] Line correctly drawn [with extrapolation just to V axis] (1)	3
	(d)	(i)	[e.m.f. =] 1.6 V	1
		(ii)	gradient attempted [or by impl.](1); $r = 0.33 \Omega / 0.3 \Omega / {}^{1}/_{3}\Omega$ (1)	2
				[10]
4.	(a)	(i)	Total distance [Total] time [or equiv.] [Not rate of change of distance]	1
		(ii)	Time for the whole journey = $3 h + 4 h = 7 h (1)$ [or 25 200 s]	
			Mean speed = $\frac{480(1)}{7} \left[\frac{480000}{25200} \right] = 68.6 \text{ km h}^{-1} (1) [\text{accept } 69 - \text{not } 70]$	3
	<i>(b)</i>	(i)	Forward force labelled Driving / engine force and reverse force labelled Friction / drag / air resistance]	1
		(ii)	Maximum at $t = 0$ (s) [accept: starts high at $t = 0$](1) Decreases (1) to zero [after 8 s] (1)	1 3
		(iii)	$a = \frac{\Delta v(\text{from tangent})}{\Delta t \text{ (from tangent)}} (= 2.75 \text{ [accept } 2.6 - 2.9 \text{] m s}^{-1}) (1)$ $\Sigma F = ma / \Sigma F = 350 \times 2.75 (\text{ecf}) (1) = 962.5 \text{ [accept } 910 - 1015 \text{] N} (1)$	3
	(C)	(i)	Force × distance (moved) (1) in the direction of the force (1) [or equivalent, e.g. component of force in the direction of motion × distance moved, $Fd\cos\theta$ if symbols defined]	2
		(ii)	Power $P = \frac{\text{work done}}{\text{time}}$ or $P = \frac{Fd}{t}(1)$ $d/t \text{ identified}$ with $v(1)$ [by impl. if $F \times d / t$ used to define power]	2
		(iii)	$F = \frac{40 \times 10^3}{18} [= 2200 \text{ N}]$	1
	(d)	(i)	Energy cannot be created or destroyed only changed from one form to another.	1
		(ii)	Brake pads and wheel discs heat up (1) [accept k.e. \rightarrow heat energy] Reference to particles' gaining energy (1)	2
				[20]

Question			Marking details	Marks Available
5.	(a)	(i)	Wire with rule positioned (1) and <u>labelled</u> moving pointer / jockey / croc clip (1) Either c orrectly positioned ohm-meter with no power supply or correctly position ammeter and voltmeter with power supply (1)	3
		(ii)	[Different] length[s] of wire (1) Either measure V and I or measure / read R (1)	2
		(iii)	Diameter of wire [not radius or csa by accept "thickness"] with micrometer / vernier calliper	1
		(iv)	cross-sectional area fro πr^2 or $\pi (d/2)^2 (1)$ graph of <i>R</i> against <i>l</i> [or mean value of <i>R/l</i>] (1) ρ = gradient × [cs]a [or mean value of <i>R/l</i> × csa] (1) [NB <i>R</i> = <i>V/I</i> given here can be used to credit 2 nd mark of (ii)] [NB Finding <i>R</i> for a measured length and [cs] area and then ρ calculated \rightarrow 1 only]	3
	<i>(b)</i>	(i)	$R \propto l(1) \therefore R$ <u>increases</u> as strain gauge gets longer (1) $R \propto {}^{1}\!/\!A(1) \therefore R$ <u>increases</u> as the strain gauge gets thinner (1) [or $R = \frac{\rho l}{A}$ or $\rho = \frac{RA}{l}(1), A$ increases & <i>l</i> decreases (1)	
			ρ doesn't change /constant (1) so resistance increases (1)]	4
		(ii)	[csa =] $0.2 \times 10^{-3} \times 0.0012 \times 10^{-3}$ [or equiv.] (1) $\rho = 4.9 \times 10^{-7} \Omega$ m ((unit)) (1) [ecf from csa calculation] [ecf on powers of 10 in both A and I]	2
		(iii)	Either 1.6 = $\frac{650}{650 + R} \times 6(1)$ Manipulation (1); $R = 1788 \Omega$ (1) $R = \frac{(6 - 1.6)(1)}{2.46 \times 10^{-3}} = 1788 \Omega$ (1)	3
				[18]

Question			Marking details	
6.	(a)	(i) (ii)	Horizontal arrow [by eye] to right, close to A , labelled D . (1) Vertically downwards arrow at A labelled F . (1)[NB if other force(s) labelled, s.i.f. $\rightarrow 0$]	2
	<i>(b)</i>	(i)	$U_{\rm H} = \frac{4.50}{1.50} \left(= 3.0 {\rm m s^{-1}} \right)$	1
		(ii)	Use of relevant equation, e.g. $v = u + at$ or $v^2 = u^2 + 2ax$ (1) [or by impl.] Correct subst e.g. $0 = u - 9.81 \times 0.75$ or $0 = u^2 - 2 \times 9.81 \times 2.75$ (1) [or by impl.]	
			Answer $U = 7.3 / 7.35 / 7.4 \text{ m s}^{-1}(1)$	3
		(iii)	$U = \sqrt{3.0^2 + 7.4^2} \text{ [or } U^2 = 3^2 + 7.4^2 \text{] (1) [e.c.f. on both velocities]}$ = 7.9 - 8.0 m s ⁻¹ (1)	2
	(c)	(i)	$E_{\text{total}} = mgh + \frac{1}{2}mv_{\text{H}}^{2} \text{ [or by impl.] [Accept } E_{\text{total}} = \text{P.E.} + \text{K.E.] (1)}$ = 6.0×9.81×2.75 + $\frac{1}{2}$ ×6.0×3.0 ² [e.c.f. on v _H] (1) [subst] = 189 J (1)	
			[NB If only PE considered then 0]	3
		(ii)	Extreme points of trajectory both marked with a K .	1
		(iii)	$\frac{1}{2}mU^2 = 189(1)$ [e.c.f.] [accept KE = 189 J ecf] $U = 7.9 \text{ m s}^{-1}(1)$	2
				[14]