PH1 Mark Scheme - January 2010

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Marking details \\
Flow of charge [acceptcharge/ions] or \(\frac{[\Delta] Q}{[\Delta] t}\), if the symbols defined \\
Sum of areas of triangle and rectangle areas attempted [or reasonable attempt at area of trapezium] (1) \(Q=3.0 \mathrm{C}((\) unit \())(1)\)
\[
\begin{aligned}
\& \text { No. of electrons }=\frac{3.0(\text { e.c.f. })}{1.6 \times 10^{-19}(1)}=1.9 \times 10^{-19}(1)\left[1^{\text {st }} \text { mark div by } e\right] \\
\& I=1.2(0) \mathrm{A}(\text { from graph })(1) ; \\
\& v
\end{aligned} \begin{array}{rl}
n A e \& I \\
\& \text { or by implipulation shown }- \text { could be in following substitution }- \\
\& =3.75 \times 10^{-5} \mathrm{~m} \mathrm{~s}^{-1}\left[\text { accept } 3.8 \times 10^{-5} \mathrm{~m} \mathrm{~s}^{-1}\right](\text { e.c.f. on } I)(1)
\end{array}
\]
\end{tabular}} \& Marks Available \\
\hline 1. \& (a)
(b) \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\end{tabular} \& \& \begin{tabular}{c}
2 \\
\\
\\
3 \\
\hline 8\(]\)
\end{tabular} \\
\hline 2. \& (a)
(b) \& (i)
(ii)

(iii) \& \begin{tabular}{l}
Free [or equiv, e.g. conducting / moving / delocalised] electrons (1) collide / interact / hindered [by] (1) with atoms / ions of metal conductor / lattice ["particles" b.o.d.](1) \\
I. [0-2 V]: Resistance constant / changes by v. small amount \\
II. [2-8 V]: Resistance increases \\
Either
$$
R_{\text {bulb }}=\frac{6.0}{0.8(1)}=7.5 \Omega(1)
$$ \\
Total resistance $=5 \Omega(1)$ [ecf] [Correct use of $\left.\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}\right]$ \\
$I=1.2 \mathrm{~A}(1)[\operatorname{ecf}$ on $R]$ \\
Or \\
I through $15 \Omega=\frac{6.0}{15}(1)=0.4 \mathrm{~A}(1)$ \\
I through bulb $=0.8 \mathrm{~A}$ (1) \\
\therefore Total current $=1.2 \mathrm{~A}$ (1) \\
Subst in $P=I^{2} R$ [ecf on R and I] or in $P=\frac{V^{2}}{R}$ [ecf on R only] or
$$
\begin{aligned}
& P=I V[\text { ecf on } I \text { only }] \\
& P=7.2 \mathrm{~W}(1)
\end{aligned}
$$

 \&

3 \\
1 \\
1 \\
\\
\\
\\
\\
\\
\\
4 \\
4 \\
\\
\hline
\end{tabular} \\

\hline
\end{tabular}

| Question | | | Marking details |
| :--- | :--- | :--- | :--- | | Marks
 Available |
| :---: |
| (b) |
| (c) |

Question			Marking details		Marks Available
5.	(a)	(i)	Wire with rule positioned (1) and labelled moving pointer / jockey / croc clip (1) Either correctly positioned ohm-meter with no power supply or correctly position ammeter and voltmeter with power supply (1)		3
		(ii)	[Different] length[s] of wire (1) Either measure V and I or mea	$\text { re / read } R(1)$	2
		(iii)	Diameter of wire [not radius or micrometer / vernier calliper	by accept "thickness"] with	1
		(iv)	cross-sectional area fro πr^{2} or π graph of R against l [or mean v $\rho=$ gradient \times [cs]a [or mean v [NB $R=V / I$ given here can be [NB Finding R for a measured l calculated $\rightarrow 1$ only]	$2^{2}(1)$ of $R / l]$ (1) of $R / l \times \mathrm{csa}$ (1) d to credit $2^{\text {nd }}$ mark of (ii)] th and [cs] area and then ρ	3
	(b)	(i)	$R \propto l(1) \therefore R$ increases as strain $R \propto{ }^{1 /} A(1) \therefore R$ increases as the [or $R=\frac{\rho l}{A}$ or $\rho=\frac{R A}{l}(1), A$ inc ρ doesn't change /constant (1) s	auge gets longer (1) rain gauge gets thinner (1) ases \& l decreases (1) resistance increases (1)]	4
		(ii)	$\begin{aligned} & {[\text { csa }=] 0.2 \times 10^{-3} \times 0.0012 \times 10} \\ & \rho=4.9 \times 10^{-7} \Omega \mathrm{~m}((\text { unit) })(1) \\ & {[\text { ecf on powers of } 10 \text { in both } A \text { a }} \end{aligned}$	[or equiv.] (1) f from csa calculation] l]	2
		(iii)	Either $1.6=\frac{650}{650+R} \times 6(1)$ Manipulation (1); $R=1788 \Omega$ (1)	$\begin{aligned} & \text { Or } \\ & I=\frac{1.6}{650}\left(=2.46 \times 10^{-3} \mathrm{~A}\right)(1) \\ & R=\frac{(6-1.6)(1)}{2.46 \times 10^{-3}}=1788 \Omega(1) \end{aligned}$	3
					[18]

Question			Marking details	Marks Available
6.	(a)	(i) (ii)	Horizontal arrow [by eye] to right, close to A, labelled D. (1) Vertically downwards arrow at \mathbf{A} labelled \mathbf{F}. (1)[NB if other force(s) labelled, s.i.f. $\rightarrow 0$]	2
	(b)	(i)	$U_{\mathrm{H}}=\frac{4.50}{1.50}\left(=3.0 \mathrm{~m} \mathrm{~s}^{-1}\right)$	1
		(ii)	Use of relevant equation, e.g. $v=u+a t$ or $v^{2}=u^{2}+2 a x$ (1) [or by impl.] Correct subst e.g. $0=u-9.81 \times 0.75$ or $0=u^{2}-2 \times 9.81 \times 2.75$ (1) [or by impl.] Answer $U=7.3 / 7.35 / 7.4 \mathrm{~m} \mathrm{~s}^{-1}(1)$	3
		(iii)	$U=\sqrt{3.0^{2}+7.4^{2}}$ [or $U^{2}=3^{2}+7.4^{2}$] (1) [e.c.f. on both velocities] $=7.9-8.0 \mathrm{~m} \mathrm{~s}^{-1}$ (1)	2
	(c)	(i)	$\begin{aligned} E_{\text {total }} & =m g h+\frac{1}{2} m v_{\mathrm{H}}^{2}[\text { or by impl. }]\left[\text { Accept } E_{\text {total }}=\text { P.E. }+ \text { K.E. }\right](1) \\ & \left.=6.0 \times 9.81 \times 2.75+\frac{1}{2} \times 6.0 \times 3.0^{2} \text { [e.c.f. on } v_{\mathrm{H}}\right](1)[\text { subst }] \\ & =189 \mathrm{~J}(1) \end{aligned}$ [NB If only PE considered then 0]	3
		(ii) (iii)	Extreme points of trajectory both marked with a \mathbf{K}. $\left.\frac{1}{2} m U^{2}=189 \text { (1) [e.c.f.] [accept } \mathrm{KE}=189 \mathrm{~J} \mathrm{ecf}\right]$	1
				[14]

